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Part I: the classics Harmonic Growth ...

Air, water and mathematics

• Incompressible, immiscible fluids with very large/small viscosity;

• Averaging the Navier-Stokes equations in one dimension and neglecting
surface tension:

Vn ∼ −∇np, ∆p = 0 on D−, p ∼ − log |z|, z →∞, p = 0 on D+
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Part I: the classics Harmonic Growth ...

Patterns: fingers, fjords, cusps
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And more patterns . . .
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50 years later Harmonic Growth ...

The solution: conformal transformations 101

tg

z ! plane w ! plane

K

!

t

t
t

f t

DO

• 1947: Polubarinova-Kochina, Galin and Kufarev
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50 years later Harmonic Growth ...

Conformal maps dynamics

z(w, t0) = r(t0)w +
∑
k≥1

uk(t0)w−k, |w| ≥ 1.

p(z) ∼ log |w(z)|, Vn ∼ |w′(z)|, complex Darcy law.

Area law : t0 = |r|2 −
∑
k>0

k|uk|2, t0 =
1
π

∫
D+

dA

Poisson bracket : {z, z̄}PB ≡ w
(
∂z

∂w

∂z̄

∂t0
− ∂z̄

∂w

∂z

∂t0

)
= 1
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75 years later Harmonic Growth ...

Integrability: harmonic growth as inverse problem

• S. Richardson, Journal of Fluid Mechanics 56, 1972

Harmonic moments : tk = − 1
kπ

∫
D−

z−kd2z :
dtk
dt0

= 0, k ≥ 1.

• Inverse problem of moments: given {tk}, t0 find D+

z(w, t0, {tk}) = r(t0, {tk})w +
∑
k≥1

uk(t0, {tk})w−k, |w| ≥ 1.

• 1D case: A.A. Markov (L-problem of moments)
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When it happens Harmonic Growth ...

A closer look at finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:

z(w) = rw + 3t3r2w−2, t0 = r2 − 18|t3|2r4, t0 ≤ tc =
1
2
.

dt0
dr

= 0, at t0 = tc

dz
dw

= 0, at w = 1.

w′(z)→∞, z ∈ ∂D
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When it happens Harmonic Growth ...

Exceptions: engineers and pysicists

Circle, tk = 0
z(w) = rw.

Ellipse
z(w) = rw + uw−1

Regularization schemes ... singular perturbation problem!
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Part I: Schwarz functions

• Holomorphic potential V (z) =
∑
k tkz

k, z → 0

• Schwarz function S(z) = z̄ on boundary Γ = ∂D, with expansion

S(z) = V ′(z) +
t0
z

+O(z−2), z →∞

(meromorphic - quadrature domains QD, analytic - generalized QD)

• Harmonic growth law: ∂t0S(z, t0) = i∂zφ(z, t0), w = eiφ

• M. Sakai, H. Shapiro, B. Gustaffson, M. Putinar
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Part II: Schottky doubles

• Complex curve f(z, ζ) = 0, Γ : ζ = z̄ - Schottky double; Schwarz
function: branch with proper behavior at ∞

• Cusp: branch point S′(z)→∞ meets double point S1(z) = S2(z)
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Mathematical intermezzo Harmonic Growth ...

Cusps as critical points

X

X

X

b<1/2 b=1/2
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Harmonic growth: constrained variational problem

Find support D of distribution ρ(z) solving
∫
D
ρ(z)d2z = t0, and

δ

δρ(z)

∫
D

ρ(z)
[
−|z|2 + V (z) + V (z) +

∫
D

ρ(ζ) log |z − ζ|2d2ζ

]
d2z = 0

• Smooth solution: characteristic function of D, ρ(z) = χD(z)

• Equivalent exterior potential created by distribution of singularities of the
Schwarz function (poles, cuts) ρs(z)∫

f(z)ρ(z)d2z =
∫
f(z)ρs(z)d2z, f(z) integrable
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Proper continuum limit Harmonic Growth ...

Discretization: bi-orthogonal polynomials

Deformed Bargman kernel – biorthogonal polynomials∫
Pn(z)Pm(z)e−N [|z|2−V (z)−V (z)]d2z ∼ δnm

Projected on orthogonal functions ψn(z) = Pn(z)eNV (z), operator identity

〈ψn|z|ψm〉 = 〈ψn|N−1∂z|ψm〉

Heisenberg algebra:

[z̄, z] =
1
N
, [log ŵ, n] =

1
N
, ŵ = eN

−1∂n
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A second example Harmonic Growth ...

Ellipse: Hermite polynomials

• Potential, wave functions: V (z) = t2z
2, ψn(z) = Hn(

√
N

1−2t2
z)eNt2z

2
,

• Conformal map, area law: z(w) = rnw+unw
−1, N = r2n[1− 4|t2|2r2n]

• “Raising and lowering” operators:

zψn = rnψn+1 + unψn−1, N−1∂zψn = rn−1ψn−1 + un+1ψn+1

• Distribution of zeros of polynomials (branch cut of Schwarz function):
z ∈ [−an, an], an =

√
2|t2|rnrn+1

LA-UR 07-7400 20



Potential theory at finite N Harmonic Growth ...

Discretized harmonic growth law

ρN(z) =
N∑
n=1

|ψn(z)|2e−N |z|
2



Potential theory at finite N Harmonic Growth ...

Discretized harmonic growth law

ρN(z) =
N∑
n=1

|ψn(z)|2e−N |z|
2

ρN(z)− ρN−1(z) = |ψN(z)|2e−N |z|
2



Potential theory at finite N Harmonic Growth ...

Discretized harmonic growth law

ρN(z) =
N∑
n=1

|ψn(z)|2e−N |z|
2

ρN(z)− ρN−1(z) = |ψN(z)|2e−N |z|
2

• Large N limit - becomes continuous growth law

|ψN(z)|2e−N |z|
2
→ δ∂D(z)

• Work with Ed. Saff (Vanderbilt) and N. Makarov (Caltech)
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Growth as IDM Harmonic Growth ...

Isomonodromic deformations and weak solutions of
harmonic growth

• Commutation relation [z̄, z] = 1
N may be understood as isomonodromic

deformation condition, using position of branch point u(N) as scaling
function.

• Becomes the Boutroux-Krichever condition for complex curve

<
∮
y(z,N)dz = 0.

• Preserves critical points of equations solved by wavefunctions
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Cusp formation Harmonic Growth ...

Cusps and polynomials: novel special functions

Isomonodromic deformation:

∂zΨ = ΛΨ, ∂νΨ = QΨ, Ψ =
(

ψ
ψν

)
,

Compatibility conditions:

∂νΛ− ∂ζQ = [Q,Λ]

Painlevé I equation:
uννν − 12uuν = 1.
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Continuum limit Harmonic Growth ...

Harmonic growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for N →∞,

• Density ρN(z)→ χD(z) (characteristic function of domain D)

• Increasing N preserves the conservation laws of harmonic growth

• Formal solution: normal ensemble [M,M†] = 0,

dµ(M) = exp

Tr

−N
MM +

∑
k≥1

tkM
k +

∑
k≥1

tkMk

dµ̃(M)
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Normal matrices: a physicist’s proof

Integration over normal matrices: Vandermonde of eigenvalues

• dµ(M)→
∏
i<j |zi − zj|2

∏
i exp{−N [|zi|2 − V (zi)− V (zi)]}d2zi

• Equilibrium distribution: extremum of entropy E[logP (M)]M

• Distribution of eigenvalues:

δ

δρ(zi)
E
∑
i

ρ(zi)

−|zi|2 + V (zi) + V (zi) +
1
N

∑
j 6=i

ρ(zj) log |zi − zj|2
 = 0

• Continuum limit = harmonic growth variational formulation
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Applications

• New asymptotics for Painlevé-type functions

• Refined scaled (weighted) kernels of bi-orthogonal polynomials

• Integrability-preserving regularization scheme
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